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ABSTRACT Generally, the main task of the optimal operation in the industrial process is to satisfy the
process technical requirements, and the PID controller is a well-known controller in industrial control
applications. Nevertheless, due to the complicated mechanisms and the dynamic characteristics of a complex
industrial process, the conventional PID controller fails to provide effective control to such systems. In this
paper, we develop a novel discrete-time fractional order PID (DFOPID) control strategy to achieve the
technical requirements of the complex industrial process. The proposed work is conducted through a
combination of three novel interdependent efforts. First, on the basis of thewidely used Tustin operator and its
Taylor series, a digital structure of the DFOPID is proposed. Second, in order to solve the stability problem
of the complex industrial process, an optimal setting of the approximation function’s order (N ) and five
parameters (λ,µ,Kp,Ki,Kd ) is necessary. Hence, an integral time absolute error (ITAE) criterion is applied
to convert the optimal setting problem to a nonconvex optimization problem. Finally, a novel intelligent
optimization search algorithm called state transition algorithm is employed to carry out the aforementioned
design procedure. Furthermore, the performance of the DFOPID control strategy in some practical industrial
control systems, including the copper removal process and the electrochemical process of zinc are also
investigated.

INDEX TERMS Discrete-time system, PIλDµ control, state transition algorithm, discretization method,
complex industrial process.

I. INTRODUCTION
In the past several decades, the main task of the optimal
operation in industrial process is to satisfy the pro-
cess technical requirements. PID controllers achieved high
achievements and have undoubtedly been the most widely
used controllers in various industrial applications. Due to the
simplicity of design and implementation of PID controllers,
many researchers hope to improve the performance of these
controllers by studying new structures and improving adjust-
ment methods [1]. One of the attempts was the general form
of the PID controller proposed by Podlubny for the first
time, known as the FOPID or PIλDµ controller [2]. Compared
with conventional PID, FOPID has unique characteristics
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such as low sensitivity to external disturbances, infinite
dimension, and memory effect [3]. Hence, there are numer-
ous PIλDµ-type controllers proposed in various applications.
Saleem et al. [4] presented a robust adaptation mechanism
for the orders of a FOPID controller in order to optimally
regulate the speed of a permanent magnet direct current
motor. Monjie et al. [5] applied the PIλDµ controller to a
low pressure flowing water circuit control system. In [6],
a fractional-order fuzzy PID controller was applied to the
binary distillation column system for controlling the dis-
tillate composition. Saptarshi et al. [7] applied the hybrid
fuzzy PIλDµ controllers to some oscillatory fractional order
processes.

It is obvious that there are many superiorities and appli-
cations of the PIλDµ-type controllers. Nevertheless, because
most industrial system models are dynamically non-linear,
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discrete forms of PIλDµ-type controllers are required for
adjustment and control. And currently, the discrete-time
structure of this type of controller can be obtained using
a process of modeling in the form of a linear difference
equation (which, of course, corresponds to rational transfer
functions in the complex z variable). Piotr et al. [8] applied
the variable, discrete-time PIλDµ controller in discrete-time
control, which showed new unlimited possibilities of shaping
its transient characteristics to preserve the proportional, inte-
gral, and differential action. A proposition of how to apply
a discrete-time PIλDµ controller to the moving part of an
experimental oriented photovoltaic system for controlling the
elevation angle was investigated in [9]. Ostalczyk et al. [10]
focused on the stability analysis of a closed-loop SISO linear
discrete-time system with the variable, discrete-time PIλDµ

controller. Koksal et al. [11] proposed the application of
a PIλDµ controller to a nonlinear two-mass drive system.
Mohamad [12] employed direct and indirect strategies for the
process of discretization, and these two different methods
are compared through implementing the new form of PIλDµ

controllers on a discrete-time system. In addition, we can
also get some inspirations from other kinds of studies about
nonlinear system control, for example, Aranya et al. [13] pre-
sented a time-scale separation redesign for stabilization and
performance recovery of nonlinear systems with unmodeled
dynamics.

However, one of the most intractable problems that hin-
ders the application of the PIλDµ controller in practice is
the adjustment of the controller parameters, which greatly
affects the tracking performance and stability of the system.
FOPID is a special controller in which integral order and
differential order are fraction instead of integer. According to
our best knowledge, due to the complexity of the PIλDµ con-
troller, there has been no systematic way to set its fractional
order parameters. Hence, the main difficulty of designing
PIλDµ is to tune the controller parameters. In this study,
the problem of adjusting the parameters is converted into a
nonconvex optimization problem based on the ITAE criterion.
Then, we adopt an intelligent optimization search algorithm
to tune the FOPID controller parameters. Nowadays, there
are numerous applications of the optimization method that
should be given more attentions. Chai et al. [14] used the
improved gradient-based algorithm as the inner solver of
the constrained space maneuver vehicles trajectory optimiza-
tion problem, which can offer the user more flexibility to
control the optimization process. In [15], the randomness
and fuzziness of the foraging behavior of fruit fly swarm
in osphresis phase is described by the normal cloud model,
which aims to improve the convergence performance of fruit
fly optimization algorithm.

Recently, a novel intelligent optimization search algorithm
named state transition algorithm (STA), which was proposed
based on the concept of state and state transition, has become
quite popular due to its simple structure and efficient global
search capability [16]–[20]. It has been shown to outper-
form many types of evolutionary algorithms and heuristic

search algorithms like harmonic search and artificial bee
colony in solving many well-known benchmark optimization
problems [21]. In addition, the strong adaptability and search
capability of STA in global optimization have been tested in
several real-world applications [22]–[25]. In [26], a discrete-
STA was introduced to the water distribution networks to
solve the optimal design problem. A multi-objective-STA
was investigated for balancing the operating costs and energy
efficiency in the alumina evaporation process [27]. A con-
tinuous state transition algorithm was used to resolve the
overlapping linear sweep voltammetric peaks in the case of
small signals overlapping to a very big one [28]. Furthermore,
in [29], STA was introduced to select the optimal continuous
PIλDµ parameters, and in addition, the effect of the sam-
ple size and objective criterion on the performance of the
closed-loop system are studied. Hence, in this paper, the STA
is applied to solve the optimal design of a discrete-time PIλDµ

controller. The effectiveness of the proposed strategy will be
tested by actuating the response of some practical industrial
processes, such as copper removal process and zinc electro-
chemical process. Moreover, we use two other metaheuristic
algorithms to compare with STA and investigate their con-
vergence rate and robustness in solving discrete-time PIλDµ

controller design problem. However, it is worth noting that
one of the main disadvantage of applying the intelligent opti-
mization search algorithm is that the parameter optimization
process requires a high computational effort, whichmakes the
optimal setting process difficult to apply online. Especially
in the complex industrial processes with many disturbances.
Therefore, this method is often operated under offline condi-
tions to obtain optimized set values, and provides reference
for the factory operators to realize real-time tracking of the
process.

In what follows, the contributions of this paper are sum-
marized: (i) A novel DFOPID control strategy based on the
Tustin operator and Taylor series is proposed. (ii) On the basis
of the optimization theory and ITAE criterion, the problem
of adjusting the parameters is converted into a nonconvex
optimization problem. (iii) An intelligent optimization search
algorithm called STA is introduced to solve the aforemen-
tioned optimization problem, and another three search algo-
rithms are adopted to compare with it. (iv) Before applying
the above control strategy to the actual industrial system,
investigation and analysis about the optimal setting of the
approximation function’s order is carried out. (v) Application
effects of the proposed control strategy to some industrial
processes, such as copper removal process and zinc electro-
chemical process, are evaluated, where the system controlled
output, the controller output, and the control energy are all
taken into account.

The rest of this paper is organized as follows. Section II
introduces the basic theories of fractional calculus and PIλDµ

controller in discrete domain. In section III, the proposed
optimization problem and the brief description of the state
transition algorithm are illustrated. In section IV, some exper-
imental results are given to prove the effectiveness of the
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TABLE 1. Conversion schemes for discretizing.

proposed strategy. Section V illustrates the main conclusions
of this paper.

II. DISCRETE-TIME FRACTIONAL-ORDER CONTROL
SYSTEM AND PIλDµ Controller
The PIλDµ controller is a general form of the classical PID
controller. Therefore, some basic principles of fractional cal-
culus will be briefly introduced before describing the FOPID
controller in detail.

A. INTRODUCTION OF FRACTIONAL-ORDER CALCULUS
The fractional-order calculus, which is denoted as t0Dα

t
(where α represents the fractional order, t0 and t are the lower
and upper limits of the operation, respectively), is differential
and integral general form in non-integer order operator. And
it can be expressed by Eq. (1).

t0D
α
t =


dα

dtα
R(α) > 0,

1 R(α) = 0,∫ t
t0
(dτ )−α R(α) < 0,

(1)

where α ∈ R is the real number.
Various kinds of principles are used to definite the

fractional-order calculus, but the most widely used ones are
Riemann-Liouville (RL) and Grunwald-Letnikov (GL).

(i) Riemann-Liouville definition (RL)

t0D
α
t f (t) =

1
0(l − α)

d l

dt l

∫ t

t0

f (τ )
(t − τ )1−(l−α)

dτ, (2)

where l − 1 < α < l, and 0(·) is defined as the well-known
Euler’s gamma function that can be expressed by the follow-
ing formula.

0(z) =
∫
∞

0
tz−1e−tdt, R(z) > 0. (3)

(ii) Grünwald-Letnikov definition (GL)

t0D
α
t f (t) = lim

h→0

1
hα

[(t−t0)/h]∑
j=0

(−1)j
(
α

j

)
f (t − jh), (4)

where (−1)j
(
α
j

)
is the binomial coefficient of (1−z)α . In order

to calculate the fractional calculus, a numerical computation
method, which can be expressed by the following formula,

is provided in this paper.

t0D
α
t f (t) =

1
hα

[(t−t0)/h]∑
j=0

υ
(α)
j f (t − jh), (5)

here,

υ
(α)
0 = 1, υ(α)j = (1−

α + 1
j

)υ(α)j−1, j = 1, 2, · · · . (6)

The Laplace transformation of fractional differential and
integral of f (t) can be expressed by the following formula

L {D−αf (t)} = s−αF(s),

L {Dαf (t)} = sαF(s)−
l−1∑
κ=0

sκ [Dα−κ−1f (t)]t=0,

l − 1 < α < l. (7)

Due to
(
α
j

)
=

0(α+1)
j!0(α−j+1) , the RL definition is the same as

the GL definition. However, in this paper we use the GL def-
inition because it is more suitable for numerical calculations.

B. DISCRETE-TIME APPROXIMATION OF FRACTIONAL
CALCULUS
In general, we can use the generating function s ≈ ψ(z−1)
to represent the discretization of continuous fractional inte-
gral and differential term s∓α , where ψ(z−1) is a function
of the complex variable z or the shift operator z−1 named
discrete operator. Meanwhile, ψ(z−1) and its extended form
determine the effect of the approximation process.

Then we analyze several discrete-time approximations to
fractional derivatives and integrals, and in general, the gen-
erating function ψ(z−1) can be expressed by the following
formula [30]

ψ(z−1)∓α = (
1
βT

1− z−1

γ + (1− γ )z−1
)∓α (8)

where T is described as the sampling period, β is the
gain tuning parameter, and γ is denoted as the phase tun-
ing parameter. For instance, when β = 1 and γ =

{1/2, 7/8, 1, 3/2}, the generating function (8) becomes the
Tustin, the Al-Alaoui, the backward Euler and the implicit
Adams rules, respectively. And these conversion methods
are represented in Table 1. In this paper, the Tustin rule is
applied, since it is more accurate compared to other rules [1],
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which leads to the generating function ψ(z−1) becomes the
following general form:

sα = ψ(z−1)α = (
2
T
1− z−1

1+ z−1
)α (9)

As it is shown in Table 1, the function of z generated
by the fractional transformation is non-rational. Therefore,
we expand it based on the Taylor series to obtain a rational
expression, and then study n-term truncated series so that the
generating formula can be adjustedmore precisely.Moreover,
the expression of the rational function of Eq. (9) is as follows:

sα = ψ(z−1)α = (
2
T
)α
∞∑
n=0

fn(α)z−n (10)

where fn(α) is the coefficient which can be calculated by
Eq. (11)

fn(α) =
1
n!

dn

d(z−1)n
(
1− z−1

1+ z−1
)α
∣∣∣∣
z−1=0

(11)

Obviously, the upper bound of summation in Eq. (10)
cannot be equal to infinity in practice. In this paper, we restrict
the upper bound of the formula to N , the following formula
is proposed:

sα = ψ(z−1)α = (
2
T
)α

N∑
n=0

fn(α)z−n (12)

Now we summarize the first 9 coefficients of Eq. (12)
in Table 2.

TABLE 2. Table of formulas fn(α) for n = 0,. . . ,8.

C. THE FORM OF DISCRETE-TIME PIλDµ CONTROLLER
The transfer function of PIλDµ in the Laplace transform
domain, which was first proposed by Podlubny [2], has the
following form

Gc(s) =
U (s)
E(s)

= kp + kis−λ + kd sµ (13)

where kp, ki and kd are the proportional, integral and differ-
ential gains, respectively; λ andµ are integral and differential
orders correspondingly.

Note that Eq. (12) holds for both the positive and negative
values of α. Hence, one may try to expand the integral term
of Eq. (13) in a similar manner and arrive at an equation
like Eq. (12), but the problem with such an expansion is that

the resulted series does not have infinite direct current gain
(considering the fact that any infinite series must be truncated
in practice), which is essential for tracking the step command
without steady-state error [1]. In order to find a series approx-
imation for s−λ in terms of z−1 which has infinite direct
current gain, first we write it as s−λ = (1/s)× s1−λ and then
apply the Tustin method to it. Finally we get the following
expression:

s−λ = (
2
T
)−λ

1+ z−1

1− z−1

N∑
n=0

fn(1− λ)z−n (14)

where fn(1− λ)z−n are again calculated from Eq. (11).
Substitution of Eq. (12) and Eq. (14) in Eq. (13) results

in the following formulation for the discrete-time PIλDµ

controller

Gc(z)=Kp + Ki
1+z−1

1−z−1

N∑
n=0

fn(1− λ)z−n + Kd
N∑
n=0

fn(µ)z−n

(15)

where

Kp = kp,Ki = ki(
2
T
)−λ, Kd = kd (

2
T
)µ (16)

By using the inverse z-transform, the difference equation
relating e(k) to u(k) can be written as the following:

u(k) = u(k − 1)+ Kp[e(k)− e(k − 1)]

+Ki
N∑
n=0

fn(1− λ)[e(k−n)+e(k−n−1)]

+Kd
N∑
n=0

fn(µ)[e(k − n)− e(k − n− 1)] (17)

where the upper bound N of summation in Eq. (17) should
approach ∞ ideally, but in practice it can’t be considered
equal to infinity. Hence, we will study the effect of parameter
N on system response performance in this paper. Based on
this design idea, we will further apply this controller to the
loops of complex industrial processes. And the digital con-
trollers will be implemented since most industrial plants use
DCS or PLC control systems, the processor will continuously
execute the incremental DFOPID algorithm. In addition,
the parameters can be changed by modifying the software,
which is more flexible.

III. CONTROLLER PARAMETERS OPTIMIZATION BASED
ON STATE TRANSITION ALGORITHM
A. OPTIMIZATION PROBLEM FORMULATION
Fig.1 shows a block diagram of a closed-loop control system
with a DFOPID controller, where y(k) is regarded as the
actual output of the system at the sampling point and yr (k)
is the system’s reference output.

In this study, the optimization algorithm will be applied to
select the optimal parameters of DFOPID controller, includ-
ing N ,Kp,Ki,Kd , λ, and µ. In the previous study, we found
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FIGURE 1. The closed-loop control system with discrete-time PIλDµ

controller.

that the integral time absolute error (ITAE) has excellent
capability of tracking performance, strong robustness and
anti-disturbance [29]. Hence, the objective function based on
ITAE is defined in the following:

minH (Kp,j,Ki,j,Kd,j, λj, µj) =
J∑
j=1

M∑
k=1

ωjk|ej(k)|

s.t.



uj(k) = gj(uj(k − 1), ej(k−n), k, θj)
uminj ≤ uj(k) ≤ u

max
j

J∑
j=1

ωj = 1

k ∈ [0,M ]

(18)

where, M is the sample size, J is the total number of
closed-loop control systems, ej(k) denotes error signal of
the jth closed-loop control system which is determined by
ej(k) = yr,j(k) − yj(k), θj = [Kp,j,Ki,j,Kd,j, λj, µj] are the
controller parameters of the jth control system, and ωj repre-
sent the weighting coefficients of which values are calculated
on the basis of the industrial data.

In the following parts, a novel intelligent optimization
search algorithm called state transition algorithm will be
adopted to solve optimization problem of discrete-time
PIλDµ controller design. Next, the brief description of this
intelligent optimization method will be provided.

B. THE BRIEF DESCRIPTION OF STATE TRANSITION
ALGORITHM
State transition algorithm(STA) is a kind of intelligent opti-
mization search algorithm based on state transition and state
space. In STA, a solution to an optimization problem and the
process of updating the current solution can be considered as
a state and a state transition, respectively. Generally speaking,
the unified form of candidate solutions generated by STA can
be expressed by the following formula:{

xk+1 = Akxk + Bkuk
yk+1 = f (xk+1)

, (19)

where xk ∈ Rn is defined as a state that corresponds to the
current solution to an optimization problem; uk is defined as
a function of xk ; Ak and Bk are the state transition coefficient
matrices with proper dimensions, respectively; f is treated as
the evaluation or objective function.

There are four special state transformation operators to
generate candidate solutions.

(a) Rotation transformation

xk+1 = xk + εr
1

n‖xk‖2
Rrxk , (20)

where the rotation transformation can search on a hyper-
sphere with a given radius εr , which is a local search operator.
Rr ∈ Rn×n is a random matrix of which elements are in the
range of [-1, 1]; ‖·‖2 is the 2-norm of a vector; εr is a positive
constant term called the rotation factor.

(b) Translation transformation

xk+1 = xk + εtRt
xk − xk−1
‖xk − xk−1‖2

, (21)

where the translation transformation has a function of search-
ing on a line. Rt ∈ R is a random variable of which elements
are in the range of [0,1]; εt is regarded as a positive constant
term called the translation factor.

(c) Expansion transformation

xk+1 = xk + εeRexk , (22)

where the expansion transformation, which is defined as a
global search operator, can search in the whole space. Re ∈
Rn×n is a random diagonal matrix, and its elements obey the
Gaussian distribution of which mean value is 0 and standard
deviation is 1; εe is described as a positive constant term
called the expansion factor.

(d) Axesion transformation

xk+1 = xk + εaRaxk (23)

where the axesion transformation, which is defined as a
global search operator, can strengthen the single dimensional.
Ra ∈ Rn×n is a random diagonal matrix, and its elements
obey the Gaussian distribution of which mean value is 0 and
standard deviation is 1; εa is regarded as a positive constant
term called the axesion factor.

The procedure of the basic STA are shown in the
Algorithm 1. The flowchart of state transition algorithm

In STA, the ‘‘greedy criterion’’ is adopted to update the new
best solution. SE is the degree of search enforcement which
represents the times of transformation by a certain operator.
funfcn is the objective function, GBest represents candidate
solution set, Best is the current best solution. εr max and εr min
are the maximum value and maximum value of the rotation
factor, respectively. The rotation factor is reducing from the
εr max to the εr min in the way of exponential function of which
base is fc (lessening coefficient). Meanwhile, the specified
termination criterion in this paper is the maximum number of
iterations reaches to Maxiter .

In terms of the computational complexity, for a n
dimensional optimization problem, the computational com-
plexity of the expansion transformation operator, rotation
transformation operator and axesion transformation operator
is O(n ∗ SE) in each iteration. The translation transformation
is only usedwhen certain conditions aremet. If used, the com-
putational complexity is also O(n∗SE). Moreover, the calcu-
lation of objective function requires O(n ∗ SE) computations.

VOLUME 7, 2019 47751



F. Zhang et al.: Optimal Setting and Control Strategy for Industrial Process Based on Discrete-Time Fractional-Order PIλDµ

Algorithm 1 Pseudocode of the Continuous STA
Step 1: Set the maximum number of interations Maxiter ,
the search enforcement SE , and the initial solution Best .
Step 2: While the specified termination criterion isn’t satis-
fied

DO
FOR i=1 to maxiter
Step 2.1: if εr < εr min then

εr ← εr max
end if

Step 2.2: expansion step
GBest← expansion(funfcn,Best,SE,εe)
if fGBest < fBest then
fBest← fGBest & Best← GBest
GBest← translation(funfcn,Best,SE,εt )
if fGBest < fBest then
fBest← fGBest & Best← GBest

end if
end if

Step 2.3: rotation step
GBest← rotation(funfcn,Best,SE,εr )
if fGBest < fBest then
fBest← fGBest & Best← GBest
GBest← translation(funfcn,Best,SE,εt )
if fGBest < fBest then
fBest← fGBest & Best← GBest

end if
end if

Step 2.4: axesion step
GBest← axesion(funfcn,Best,SE,εa)
if fGBest < fBest then
fBest← fGBest & Best← GBest
GBest← translation(funfcn,Best,SE,εt )
if fGBest < fBest then
fBest← fGBest & Best← GBest

end if
end if

Step 2.5: εr ← εr
fc

Step 3: Best∗← Best

Therefore, taking into account all the above computations and
the iterations, the overall computational complexity of the
STA is O(n ∗ SE ∗Maxiter).

C. DIAGRAM OF CONTROL STRATEGY BASED ON DFOPID
The diagram of the control strategy based on DFOPID is
shown in Fig.2.

Based on the Tustin operator and its Taylor series, the novel
DFOPID control strategy is proposed. In addition, the con-
trol systems are also discretized through this discretization
method. Then, the optimization model based on the ITAE
is proposed and state transition algorithm is investigated
for solving the aforementioned optimization problem. How-
ever, before applying the state transition algorithm to this

FIGURE 2. The diagram of control strategy for industrial process based on
the DFOPID.

optimization problem, it is necessary to compare and select
the upper bound N of the DFOPID controller. By using this
optimization method, we obtain the optimization parameters
of DFOPID and PID. Then different optimization algorithms
are applied to adjust the DFOPID controller. In order to prove
the superiority of DFOPID control strategy and the com-
petitiveness of STA in solving such optimization problems,
the system response performance, control energy, variation
of control signals, the results of rank sum test of the objective
function values obtained by multiple experiments, as well as
the convergence rate of different algorithms are analyzed.

IV. EXPERIMENTAL RESULTS AND DISSCUSSION
In the procedure of designing the DFOPID controller,
the optimization algorithms are adopted to minimize the
integral time absolute error (ITAE). In this paper, STA is
used to adjust the parameters of controllers. Meanwhile,
the parameter settings of the algorithm are the same as previ-
ous study [18], which are provided as follows: fc = 2, SE =
30,Maxiter = 100, εr max = 1, εr min = 1e−4, εt = 1, εe =
1, εa = 1. These optimal values are experimentally deter-
mined under conducting a series of additional experiments
with different parameters.

A. CONTROLLER VERIFICATION AND PARAMETER
SETTING
In the first place, we change the value of N to study the
influence of this precondition on system response perfor-
mance. In addition, another three optimization algorithms
namely comprehensive learning particle swarm optimiza-
tion (CLPSO) algorithm [31], genetic algorithm (MATLAB
genetic algorithm toolbox v1.2), and violation learning dif-
ferential evolution (VLDE) algorithm [32] are adopted to
compare with STA. In order to reflect the fairness of com-
parison, the population size or degree of search enforcement
(SE = 30) and the maximum iterations (Maxiter = 100) are
the same. In addition, the design of the CLPSO algorithm
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TABLE 3. Controller gains for DFOPID and PID of the example.

FIGURE 3. The schematic of the one-link flexible robot arm.

is described in detail in [31]. And in this paper, the learning
probability Pl for each particle is set by Pli = 0.05+ 0.45 ∗
exp( 10(i−1)ps )−1
exp(10)−1 , where ps is the population size, i represents the

ith population. Furthermore, the refreshing gap parameter m
is zero. For the genetic algorithm, there are three arithmetic
operators including the select operator (Stochastic Univer-
sal Sampling, it performs selection with stochastic universal
sampling), the crossover operator (Crossover Single-Point,
it can perform single-point crossover between paired individ-
uals and return the current generation after mating, and the
crossover probability Pc is 0.7) and the mutuation operator
(This operator represents the current population which can
mutate each element with given probability and return the
resulting population, and themutation probabilityPm is 0.05).
Furthermore, more information about the VLDE algorithm
can be found in [32].

Next, the following example is investigated in this study.
Applying the discrete-time PIλDµ to the system of one-link

flexible robot arm [33]. And Fig.3 shows schematic of it,
which rotates horizontally, with the transfer function appears
as

G(s) =
−4.906s2 − 0.5884s+ 335.17

s4 + 0.55437s3 + 139.6s2 + 27.91s
. (24)

Then the discrete dynamic equation of above system (24)
can be described as follows based on the Tustin rule and
sampling time T = 0.1:

y(k + 1) = 2.933y(k)− 3.841y(k − 1)+ 2.863y(k − 2)

−0.9548y(k−3)−0.007422u(k+1)+0.005964u(k)

+0.02688u(k−1)+0.006178u(k−2)−0.007315u(k−3)

(25)

Fig.4 shows the nyquist diagram, root locus, bode diagram
and pole-zero map of the example. This system, apparently,

is a non-minimum phase process with oscillatory poles and
the step response steady state error cannot be eliminated with-
out controller. Therefore, the DFOPID controller is applied to
this system.
The solution space of Eq. (17) is five dimensional-
{λ,µ,Kp,Ki,Kd }. To reduce the time of optimal process,
the initial range of the controller parameters for this example
are limited in λ ∈ [0, 5], µ ∈ [0, 5],Kp ∈ [0, 10],Ki ∈
[0, 10], and Kd ∈ [0, 10]. But before determining the five
parameters of controller, we should choose a suitable value
of N in Eq. (17). Hence, simulation is carried out under
the different values of N . The optimal controller gains for
DFOPID and PID are provided in Table 3.

The unit step response and the controller output based on
different values of N are given in Figs. 5, 6 and 8. It is
shown that the larger the value is, the better system’s response
performance and the smaller variation of the controller output
signal will be. Then, we also perform an analysis on the
control energy(CE) which is obtained by Eq. (26).

CE =
M∑
k=1

|u(k)| (26)

Table 4 shows that the DFOPID controller with N = 8 has
the lowest control energy. Nevertheless, the time of parame-
ters optimization will increase when the value increases since
the calculation of u(k) from Eq. (17) totally needs 2N + 3
multiplications and 2N + 6 summations at each sampling
period. Hence, this paper usesN = 8 after taking into account
the response performance and the practical efficiency.

TABLE 4. The control energy for different controllers.

Moreover, we also obtained the system controlled out-
put and the PID controller output. As it can be observed
in Figs. 7 and 8, the DFOPID controller results in a more
satisfactory response performance controller output when
compared with conventional PID controller.

In the following, 30 independent simulations are per-
formed for each algorithm. And all of these algorithms are
carried out under the MATLAB(Version R2015b). The best,
mean, and worst objective function values as well as the stan-
dard deviation are calculated after 30 simulations to evaluate
the performance of these algorithms.

The experimental procedure and parameters setting are
same with the previous example. The best parameters, which
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FIGURE 4. The nyquist diagram, root locus, bode diagram and pole-zero map.

FIGURE 5. Unit step response with N=2.

are found by STA, GA, CLPSO, and VLDE, are given in the
Table 5. In addition, the detailed statistical results obtained
by different algorithms are shown in Table 6. From Table 6,
it can be seen that STA can find the minimum value with
a high probability, indicating that STA is more suitable
for this optimization problem. In addition, the Wilcoxon
rank sum test [34] is applied to analyze the performance
of these three different optimization algorithms, and the
results in Table 7 demonstrate that there is a significant
difference between the STA and the other two algorithms.
Again, Fig.9 and Fig.10 show that STA can find the optimal
parameters which lead the system into stable in a much faster
way, since the trajectories of the objective function value

FIGURE 6. Unit step response with N=5.

show that STA can converge to the global optimal solution
at 25 iterations.

B. INDUSTRIAL EXPERIMENTS
1) COPPER REMOVAL PROCESS
The proposed control strategy is applied to the cop-
per removal process in a zinc hydrometallurgy of China.
As shown in Fig. 11, the zinc sulfate solution to be purified
flows into several connected continuous stirred reactors, and
then the copper ions in the solution are gradually removed
by adding zinc powder to each reactor. Next, the solution
will be solid-liquid separated in a thickener. In the copper
removal process, the copper ion concentration in the solution
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FIGURE 7. Unit step response with N=8.

FIGURE 8. Unit step response with integer order PID controller.

is determined by the amount of zinc powder added. Higher
copper ion concentration will reduce the current efficiency
of the zinc electrolysis process and the quality of the zinc
ingot. However, an appropriate copper ion in the solution can
increase the removal efficiency of the next cobalt removal
process. Therefore, the copper ion concentration should be
strictly controlled within the required range. Due to the non-
linearity and coupling factors existing in the copper removal
process, it is difficult to ensure the copper ion concentration
at the outlet is stable.

In this paper, we take the copper removal process in the
Zhuzhou smeltery of Hunan province as an example to study
the proposed control strategy. The copper removal process
of this plant consists of two continuous stirred reactors and
one thickener. According to the principle of mass balance,
the copper removal process model can be expressed by the
following equations [35]:

VĊCu2+,1(t) = QC0
Cu2+,1(t)− (1+ q)QCCu2+,1(t)

−(a1uZn,1(t)+ a2)CCu2+,1(t)

VĊCu2+,2(t)= (1+q)QC
0
Cu2+,2(t)−(1+q)QCCu2+,1(t)

−(a3uZn,2(t)+ a4)CCu2+,2(t) (27)

where V is the volume of the reaction solution, C0
Cu2+,j

, j =

1, 2 are the copper ion concentration, ĊCu2+,j, j = 1, 2

FIGURE 9. Unit step response of the closed-loop system.

FIGURE 10. Iterative curves of the objective function values obtained by
different methods.

represent the changing rate of copper ion concentration,
C0
Cu2+,j

, j = 1, 2 denote the copper ion concentration at the
inlet, uZn,j, j = 1, 2 are the addition rate of zinc powder,
Q indicates the flow rate of the solution, and q is the returned
underflow’s flow rate. a1, a2, a3, and a4 are the parame-
ters determined by the industrial data. Here, a1 = 0.0208,
a2 = 0.1387, a3 = 0.0003, and a4 = 0.9410. In addition,
we assume C0

Cu2+,2
(t) = CCu2+,1(tend ) since the reactors are

connected.
On the basis of the forward-Euler difference principle,

the discrete-time model of the copper removal process is
transformed into the following version:

CCu2+,1(k + 1) = hQV−1C0
Cu2+,1(k)

−(h (1+ q)QV−1 − 1)CCu2+,1(k)

−h(a1uZn,1(k)+ a2)V−1CCu2+,1(k)

:= g1(CCu2+,1(k), uZn,1(k), k)

CCu2+,2(k + 1) = h (1+ q)QV−1C0
Cu2+,2(k)

−(h (1+ q)QV−1 − 1)CCu2+,1(k)

−h(a3uZn,2(k)+ a4)V−1CCu2+,2(k)

:= g2(CCu2+,2(k), uZn,2(k), k) (28)

where h denotes the step length.
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TABLE 5. Best parameters of DFOPID with different algorithms.

TABLE 6. Objective function values under different algorithms.

TABLE 7. Wilcoxon rank sum test at a 0.05 significance level.

FIGURE 11. Flow diagram of the copper removal process.

Next, DFOPID is applied to the above process for making
the copper ion concentration meet the process requirement.
The DFOPID control strategy for this problem is described
as:

uZn,j(k)= uZn,j(k−1)+Kp,j[eCu2+,j(k)−eCu2+,j(k−1)]

+Ki,j
8∑

n=0

fn(1− λ)[eCu2+,j(k−n)

+eCu2+,j(k−n−1)]+Kd,j
8∑

n=0

fn(µ)[eCu2+,j(k−n)

−eCu2+,j(k−n−1)]

:= g3,j(uZn,j(k − 1), eCu2+,j(k−n), k, θj) (29)

eCu2+,j(k) = CCu2+,j(k)− C
∗

Cu2+,j := g4,j(CCu2+,j(k), k)

(30)

where θj are the parameters to be optimized of the jth
controller, C∗

Cu2+,j
represents the process requirement of the

copper ion concentration in the jth reactor. Based on the
Eq.(18), the optimal DFOPID controller parameters can be

obtained by solving the following optimization problem:

min H =
2∑
j=1

M∑
k=0

ωjk|eCu2+,j(k)|

s.t.



CCu2+,1(k + 1) = g1(CCu2+,1(k), uZn,1(k), k)
CCu2+,2(k + 1) = g2(CCu2+,2(k), uZn,2(k), k)
uZn,j(k) = g3,j(uZn,j(k − 1), eCu2+,j(k−n), k, θj)
eCu2+,j(k) = g4,j(CCu2+,j(k), k)
Cmin
Cu2+,i

≤ CCu2+,i(k) ≤ C
max
Cu2+,i

uminZn,i ≤ uZn,i(k) ≤ u
max
Zn,i

ω1/ω2=(C0
Cu2+,2

−C∗
Cu2+,2

)/(C0
Cu2+,1

−C∗
Cu2+,1

)

ω1 + ω2 = 1
k ∈ [0,M ]

(31)

Meanwhile, some industrial data is selected from the cop-
per removal process in Zhuzhou smeltery. In this practical
plant, these sets of data are obtained by manual operation
every 2 h. Based on the industrial data, the ranges of the
constraints are listed in Table. 8. Then, STA is applied to
solve the aforementioned optimization problem, and the STA
will run 10 times under each group of data to increase the
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TABLE 8. The ranges of the different constraints.

FIGURE 12. The change curves of copper ion concentration in the (a) first reactor, (b) second reactor. Addition rate of Zinc
powder in the (c) first reactor, and (d) second reactor.

credibility of the optimization results. Fig. 12 shows the
optimization results for one group of data under different
controllers, where the copper ion concentration at inlet and
the production required concentration of the two reactors are
C0
Cu2+,1

= 2.53, C0
Cu2+,2

= 0.97, C∗
Cu2+,1

= 0.97, C∗
Cu2+,2

=

0.3, respectively. Obviously, both controllers make the copper
ion concentration meet the industrial requirements, but the
progress controlled by DFOPID controller has better system
response performance. In addition, the control energy of
DFOPID, i.e. the additive amount of zinc powder, is also less.
Furthermore, the optimal parameters of the two controllers
are presented in Table 9.

In the actual industrial process, the inlet-ion-concentration
and the flow rate will fluctuate within small ranges dur-
ing the same day. In order to further evaluate the perfor-
mance of the proposed controller, tests of robustness are
carried out. In this study, Gaussian noises with standard
deviation of ±5% are applied to simulate the disturbances
of inlet-ion-concentration and the flow rate. Fig. 13 shows
the corresponding results of one experiment. Obviously,
DFOPID controller can offer a better optimized control than
PID controller in the respect of handling the fluctuation of
industrial condition.

2) ELECTROCHEMICAL PROCESS OF ZINC
The electrochemical process is the last stage in zinc
hydrometallurgy. As shown in Fig. 14, the recovery of zinc by
electrolysis is accomplished by adding direct current (ι) to the
insoluble electrodes, and the zinc sulfate solution is reduced
to the metallic zinc at the cathode. The yield of zinc is directly
dependent on the current applied to the electrodes. The higher
the current density, the more the yield. However, the price
of the electricity is adjusted continuously according to the
varying load in China, which causes the cost of electricity is
different at different period during the same day. Therefore,
many smelters choose to increase the current density during
the period of low electricity price, and run with low current
density in the period of high electricity price. This not only
reduces the cost of power consumption, but also helps to
balance the load on the grid. Nevertheless, excessive current
density in zinc electrolysis will lead to waste of the electrical
energy, while too low current density can reduce current
efficiency. Hence, it is necessary to control the current den-
sity stably at different pricing period to meet the production
requirements of zinc output.

The seven series of electrochemical processes in the
Zhuzhou smeltery are taken as the research objects. There are
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FIGURE 13. The change curves of copper ion concentration in the (a) first reactor, (b) second reactor. Addition rate of Zinc
powder in the (c) first reactor, and (d) second reactor.

TABLE 9. Optimal parameters of PID and DFOPID controllers for copper removal process.

four pricing periods, and the required outputs of zinc in each
period are GZn,1 = 200t , GZn,2 = 160t , GZn,3 = 280t ,
GZn,4 = 320t , respectively. On the basis of the Faraday’s
laws of electrolysis, the mathematical formulation of these
seven series of electrochemical processes can be described as
follows [36]:

ĠηZn,j (t) = χ
ηBηS%ζ ηι,j (t) u

η
ι,j (t)

ζ
η
ι,j (t) =

4∑
m=0

bm
(
uηι,j (t)

)m
(32)

where η and j are the counting symbols of the series of elec-
trochemical processes and the pricing periods, respectively;
ĠηZn,j represent the changing rate of zinc output; χη describe
the number of electrolytic cells in the ηth series; Bη denote
the number of cathode plates in an electrolytic cell; S is the
area of a plate; % is the electrochemical equivalent of zinc;
uηι,j represent the current density; and ζ

η
ι,j indicate the current

efficiency; bm are the coefficients need to be determined.
Here, b0 = 0.785037, b1 = 5.855e − 4, b2 = 2e − 6,
b3 = 3.2094e− 9, b4 = −1.9052e− 12.
Similarly, the discrete-time version of the electrochemical

process model and the DFOPID control strategy can be con-
verted into as follows:

GηZn,j (k + 1)= hχηBηS%ζ ηι,j(k)u
η
ι,j(k)+G

η
Zn,j (k)

:= l1,j
(
GηZn,j (k) , ζ

η
ι,j (k) , u

η
ι,j (k) , k

)
ζ
η
ι,j (k) =

4∑
m=0

bm
(
uηι,j (k)

)m
:= l2,j

(
uηι,j (k) , k

)
(33)

uηι,j(k)= u
η
ι,j(k−1)+Kp,j[e

η
Zn,j(k)−e

η
Zn,j(k−1)]

+Ki,j
8∑

n=0

fn(1−λ)[e
η
Zn,j(k−n)

+eηZn,j(k−n−1)]+Kd,j
8∑

n=0

fn(µ)[e
η
Zn,j(k−n)

−eηZn,j(k−n−1)]

:= l3,j(u
η
ι,j(k − 1), eηZn,j(k−n), k, θj) (34)

eηZn,j(k) = GηZn,j(k)− G
∗
Zn,j

:= l4,j(G
η
Zn,j(k), k) (35)

where h denotes the step length; G∗Zn,j is the process require-
ment of the output of zinc in the jth pricing period. Mean-
while, the optimization model of this problem should be
established as the following form:

min H =
4∑
j=1

7∑
η=1

M∑
k=0

ω
η
j k|e

η
Zn,j(k)|

s.t.



GηZn,j(k+1)=!l1,j
(
GηZn,j (k) , ζ

η
ι,j (k) , u

η
ι,j (k) , k

)
ζ
η
ι,j (k) = l2,j

(
uηι,j (k) , k

)
uηι,j(k) = l3,j(u

η
ι,j(k − 1), eηZn,j(k−n), k, θj)

eηZn,j(k) = l4,j(GZn,j(k), k)

uminι,i ≤ u
η
ι,i(k) ≤ u

max
ι,i

G∗Zn,j =


21 29 33 28 30 30 30
17 23 26 22 24 24 24
30 39 46 39 43 43 43
32 44 52 44 48 48 48


χη = [240 240 246 192 208 208 208]
Bη = [34 46 54 56 56 57 57]
S = 1.13
% = 1.2202
ω
η
j = 1/G∗Zn,j

k ∈ [0,M ]
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FIGURE 14. Flow diagram of the electrochemical process of zinc.

FIGURE 15. The outputs of zinc in the first series of electrochemical processes during the (a) first pricing period, (b) second
pricing period, (c) third pricing period, and (d) fourth pricing period.

TABLE 10. Optimal parameters of PID and DFOPID controllers for electrochemical process.

Based on the production process and industrial data of
Zhuzhou smeltery, the STA is used to solve the above opti-
mization problem. Then, the control effects of one series of

electrochemical processes in four pricing periods are selected
for analysis. The system responses of the first series of pro-
cesses are shown in Figs. 15-16. Furthermore, the optimal
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FIGURE 16. The controller output in the first series of electrochemical processes during the (a) first pricing period, (b) second
pricing period, (c) third pricing period, and (d) fourth pricing period.

results are listed in Table 10. From the response curve we
can conclude that the DFOPID control strategy allows the
system to reach the required objective faster and consume less
control energy. In addition, compared to conventional PID
controlled systems, the DFOPID controlled systems have less
oscillation, which is not only beneficial to the stable operation
of the system, but also extends the service life of the governor
mechanism.

V. CONCLUSION
In this paper, the structure of DFOPID controller are estab-
lished based on the concepts of the fractional-order calculus,
Tustin rule and Taylor series. Then we focus on investigating
the optimal setting of the approximation function’s order
and five parameters for solving the stability problem in the
complex industrial process. Based on the ITAE criterion,
the above design problem is transformed into a nonconvex
optimization problem. Next, a novel intelligent optimization
search algorithm, which is named state transition algorithm,
is employed to solve the this optimization problem. Appli-
cations of this method to the some practical industrial sys-
tems show that the proposed DFOPID control strategy can
solve the stability problem more effectively. Furthermore,
experimental results also indicate that the DFOPID control
strategy leads to a better response performance and consumes

less control energy when compared with conventional PID
controller.
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